3.4.29 \(\int \frac {x^{7/2}}{(1+x^2)^3} \, dx\) [329]

3.4.29.1 Optimal result
3.4.29.2 Mathematica [A] (verified)
3.4.29.3 Rubi [A] (verified)
3.4.29.4 Maple [A] (verified)
3.4.29.5 Fricas [C] (verification not implemented)
3.4.29.6 Sympy [B] (verification not implemented)
3.4.29.7 Maxima [A] (verification not implemented)
3.4.29.8 Giac [A] (verification not implemented)
3.4.29.9 Mupad [B] (verification not implemented)

3.4.29.1 Optimal result

Integrand size = 13, antiderivative size = 129 \[ \int \frac {x^{7/2}}{\left (1+x^2\right )^3} \, dx=-\frac {x^{5/2}}{4 \left (1+x^2\right )^2}-\frac {5 \sqrt {x}}{16 \left (1+x^2\right )}-\frac {5 \arctan \left (1-\sqrt {2} \sqrt {x}\right )}{32 \sqrt {2}}+\frac {5 \arctan \left (1+\sqrt {2} \sqrt {x}\right )}{32 \sqrt {2}}-\frac {5 \log \left (1-\sqrt {2} \sqrt {x}+x\right )}{64 \sqrt {2}}+\frac {5 \log \left (1+\sqrt {2} \sqrt {x}+x\right )}{64 \sqrt {2}} \]

output
-1/4*x^(5/2)/(x^2+1)^2+5/64*arctan(-1+2^(1/2)*x^(1/2))*2^(1/2)+5/64*arctan 
(1+2^(1/2)*x^(1/2))*2^(1/2)-5/128*ln(1+x-2^(1/2)*x^(1/2))*2^(1/2)+5/128*ln 
(1+x+2^(1/2)*x^(1/2))*2^(1/2)-5/16*x^(1/2)/(x^2+1)
 
3.4.29.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.56 \[ \int \frac {x^{7/2}}{\left (1+x^2\right )^3} \, dx=\frac {1}{64} \left (-\frac {4 \sqrt {x} \left (5+9 x^2\right )}{\left (1+x^2\right )^2}+5 \sqrt {2} \arctan \left (\frac {-1+x}{\sqrt {2} \sqrt {x}}\right )+5 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {x}}{1+x}\right )\right ) \]

input
Integrate[x^(7/2)/(1 + x^2)^3,x]
 
output
((-4*Sqrt[x]*(5 + 9*x^2))/(1 + x^2)^2 + 5*Sqrt[2]*ArcTan[(-1 + x)/(Sqrt[2] 
*Sqrt[x])] + 5*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[x])/(1 + x)])/64
 
3.4.29.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.12, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.846, Rules used = {252, 252, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{7/2}}{\left (x^2+1\right )^3} \, dx\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {5}{8} \int \frac {x^{3/2}}{\left (x^2+1\right )^2}dx-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {5}{8} \left (\frac {1}{4} \int \frac {1}{\sqrt {x} \left (x^2+1\right )}dx-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {5}{8} \left (\frac {1}{2} \int \frac {1}{x^2+1}d\sqrt {x}-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1-x}{x^2+1}d\sqrt {x}+\frac {1}{2} \int \frac {x+1}{x^2+1}d\sqrt {x}\right )-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1-x}{x^2+1}d\sqrt {x}+\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{x-\sqrt {2} \sqrt {x}+1}d\sqrt {x}+\frac {1}{2} \int \frac {1}{x+\sqrt {2} \sqrt {x}+1}d\sqrt {x}\right )\right )-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1-x}{x^2+1}d\sqrt {x}+\frac {1}{2} \left (\frac {\int \frac {1}{-x-1}d\left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-x-1}d\left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}\right )\right )-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1-x}{x^2+1}d\sqrt {x}+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )\right )-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{2} \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {x}}{x-\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {x}+1\right )}{x+\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )\right )-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {x}}{x-\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {x}+1\right )}{x+\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )\right )-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {x}}{x-\sqrt {2} \sqrt {x}+1}d\sqrt {x}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {x}+1}{x+\sqrt {2} \sqrt {x}+1}d\sqrt {x}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )\right )-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {5}{8} \left (\frac {1}{2} \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {x}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {x}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (x+\sqrt {2} \sqrt {x}+1\right )}{2 \sqrt {2}}-\frac {\log \left (x-\sqrt {2} \sqrt {x}+1\right )}{2 \sqrt {2}}\right )\right )-\frac {\sqrt {x}}{2 \left (x^2+1\right )}\right )-\frac {x^{5/2}}{4 \left (x^2+1\right )^2}\)

input
Int[x^(7/2)/(1 + x^2)^3,x]
 
output
-1/4*x^(5/2)/(1 + x^2)^2 + (5*(-1/2*Sqrt[x]/(1 + x^2) + ((-(ArcTan[1 - Sqr 
t[2]*Sqrt[x]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[x]]/Sqrt[2])/2 + (-1/2*Lo 
g[1 - Sqrt[2]*Sqrt[x] + x]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[x] + x]/(2*Sqrt[ 
2]))/2)/2))/8
 

3.4.29.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.4.29.4 Maple [A] (verified)

Time = 1.94 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.59

method result size
risch \(-\frac {\left (9 x^{2}+5\right ) \sqrt {x}}{16 \left (x^{2}+1\right )^{2}}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {1+x +\sqrt {2}\, \sqrt {x}}{1+x -\sqrt {2}\, \sqrt {x}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {x}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {x}\right )\right )}{128}\) \(76\)
derivativedivides \(\frac {-\frac {9 x^{\frac {5}{2}}}{16}-\frac {5 \sqrt {x}}{16}}{\left (x^{2}+1\right )^{2}}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {1+x +\sqrt {2}\, \sqrt {x}}{1+x -\sqrt {2}\, \sqrt {x}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {x}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {x}\right )\right )}{128}\) \(77\)
default \(\frac {-\frac {9 x^{\frac {5}{2}}}{16}-\frac {5 \sqrt {x}}{16}}{\left (x^{2}+1\right )^{2}}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {1+x +\sqrt {2}\, \sqrt {x}}{1+x -\sqrt {2}\, \sqrt {x}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {x}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {x}\right )\right )}{128}\) \(77\)
meijerg \(-\frac {\sqrt {x}\, \left (81 x^{2}+45\right )}{144 \left (x^{2}+1\right )^{2}}+\frac {5 \sqrt {x}\, \left (-\frac {\sqrt {2}\, \ln \left (1-\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}+\sqrt {x^{2}}\right )}{2 \left (x^{2}\right )^{\frac {1}{4}}}+\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}{2-\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}\right )}{\left (x^{2}\right )^{\frac {1}{4}}}+\frac {\sqrt {2}\, \ln \left (1+\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}+\sqrt {x^{2}}\right )}{2 \left (x^{2}\right )^{\frac {1}{4}}}+\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}{2+\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}\right )}{\left (x^{2}\right )^{\frac {1}{4}}}\right )}{64}\) \(150\)
trager \(-\frac {\left (9 x^{2}+5\right ) \sqrt {x}}{16 \left (x^{2}+1\right )^{2}}-\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \ln \left (-\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{5} x +\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{5}-2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) x +4 \sqrt {x}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )}{\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} x -\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2}-x -1}\right )}{64}+\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{5} x -\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{5}-2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} x +\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) x +4 \sqrt {x}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )}{\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} x -\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2}+x +1}\right )}{64}\) \(197\)

input
int(x^(7/2)/(x^2+1)^3,x,method=_RETURNVERBOSE)
 
output
-1/16*(9*x^2+5)/(x^2+1)^2*x^(1/2)+5/128*2^(1/2)*(ln((1+x+2^(1/2)*x^(1/2))/ 
(1+x-2^(1/2)*x^(1/2)))+2*arctan(1+2^(1/2)*x^(1/2))+2*arctan(-1+2^(1/2)*x^( 
1/2)))
 
3.4.29.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.11 \[ \int \frac {x^{7/2}}{\left (1+x^2\right )^3} \, dx=-\frac {5 \, \sqrt {2} {\left (-\left (i + 1\right ) \, x^{4} - \left (2 i + 2\right ) \, x^{2} - i - 1\right )} \log \left (\left (i + 1\right ) \, \sqrt {2} + 2 \, \sqrt {x}\right ) + 5 \, \sqrt {2} {\left (\left (i - 1\right ) \, x^{4} + \left (2 i - 2\right ) \, x^{2} + i - 1\right )} \log \left (-\left (i - 1\right ) \, \sqrt {2} + 2 \, \sqrt {x}\right ) + 5 \, \sqrt {2} {\left (-\left (i - 1\right ) \, x^{4} - \left (2 i - 2\right ) \, x^{2} - i + 1\right )} \log \left (\left (i - 1\right ) \, \sqrt {2} + 2 \, \sqrt {x}\right ) + 5 \, \sqrt {2} {\left (\left (i + 1\right ) \, x^{4} + \left (2 i + 2\right ) \, x^{2} + i + 1\right )} \log \left (-\left (i + 1\right ) \, \sqrt {2} + 2 \, \sqrt {x}\right ) + 8 \, {\left (9 \, x^{2} + 5\right )} \sqrt {x}}{128 \, {\left (x^{4} + 2 \, x^{2} + 1\right )}} \]

input
integrate(x^(7/2)/(x^2+1)^3,x, algorithm="fricas")
 
output
-1/128*(5*sqrt(2)*(-(I + 1)*x^4 - (2*I + 2)*x^2 - I - 1)*log((I + 1)*sqrt( 
2) + 2*sqrt(x)) + 5*sqrt(2)*((I - 1)*x^4 + (2*I - 2)*x^2 + I - 1)*log(-(I 
- 1)*sqrt(2) + 2*sqrt(x)) + 5*sqrt(2)*(-(I - 1)*x^4 - (2*I - 2)*x^2 - I + 
1)*log((I - 1)*sqrt(2) + 2*sqrt(x)) + 5*sqrt(2)*((I + 1)*x^4 + (2*I + 2)*x 
^2 + I + 1)*log(-(I + 1)*sqrt(2) + 2*sqrt(x)) + 8*(9*x^2 + 5)*sqrt(x))/(x^ 
4 + 2*x^2 + 1)
 
3.4.29.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 481 vs. \(2 (117) = 234\).

Time = 3.45 (sec) , antiderivative size = 481, normalized size of antiderivative = 3.73 \[ \int \frac {x^{7/2}}{\left (1+x^2\right )^3} \, dx=- \frac {72 x^{\frac {5}{2}}}{128 x^{4} + 256 x^{2} + 128} - \frac {40 \sqrt {x}}{128 x^{4} + 256 x^{2} + 128} - \frac {5 \sqrt {2} x^{4} \log {\left (- 4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {5 \sqrt {2} x^{4} \log {\left (4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {10 \sqrt {2} x^{4} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} - 1 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {10 \sqrt {2} x^{4} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} + 1 \right )}}{128 x^{4} + 256 x^{2} + 128} - \frac {10 \sqrt {2} x^{2} \log {\left (- 4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {10 \sqrt {2} x^{2} \log {\left (4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {20 \sqrt {2} x^{2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} - 1 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {20 \sqrt {2} x^{2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} + 1 \right )}}{128 x^{4} + 256 x^{2} + 128} - \frac {5 \sqrt {2} \log {\left (- 4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {5 \sqrt {2} \log {\left (4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {10 \sqrt {2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} - 1 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {10 \sqrt {2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} + 1 \right )}}{128 x^{4} + 256 x^{2} + 128} \]

input
integrate(x**(7/2)/(x**2+1)**3,x)
 
output
-72*x**(5/2)/(128*x**4 + 256*x**2 + 128) - 40*sqrt(x)/(128*x**4 + 256*x**2 
 + 128) - 5*sqrt(2)*x**4*log(-4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x**4 + 256 
*x**2 + 128) + 5*sqrt(2)*x**4*log(4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x**4 + 
 256*x**2 + 128) + 10*sqrt(2)*x**4*atan(sqrt(2)*sqrt(x) - 1)/(128*x**4 + 2 
56*x**2 + 128) + 10*sqrt(2)*x**4*atan(sqrt(2)*sqrt(x) + 1)/(128*x**4 + 256 
*x**2 + 128) - 10*sqrt(2)*x**2*log(-4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x**4 
 + 256*x**2 + 128) + 10*sqrt(2)*x**2*log(4*sqrt(2)*sqrt(x) + 4*x + 4)/(128 
*x**4 + 256*x**2 + 128) + 20*sqrt(2)*x**2*atan(sqrt(2)*sqrt(x) - 1)/(128*x 
**4 + 256*x**2 + 128) + 20*sqrt(2)*x**2*atan(sqrt(2)*sqrt(x) + 1)/(128*x** 
4 + 256*x**2 + 128) - 5*sqrt(2)*log(-4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x** 
4 + 256*x**2 + 128) + 5*sqrt(2)*log(4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x**4 
 + 256*x**2 + 128) + 10*sqrt(2)*atan(sqrt(2)*sqrt(x) - 1)/(128*x**4 + 256* 
x**2 + 128) + 10*sqrt(2)*atan(sqrt(2)*sqrt(x) + 1)/(128*x**4 + 256*x**2 + 
128)
 
3.4.29.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.77 \[ \int \frac {x^{7/2}}{\left (1+x^2\right )^3} \, dx=\frac {5}{64} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {x}\right )}\right ) + \frac {5}{64} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {x}\right )}\right ) + \frac {5}{128} \, \sqrt {2} \log \left (\sqrt {2} \sqrt {x} + x + 1\right ) - \frac {5}{128} \, \sqrt {2} \log \left (-\sqrt {2} \sqrt {x} + x + 1\right ) - \frac {9 \, x^{\frac {5}{2}} + 5 \, \sqrt {x}}{16 \, {\left (x^{4} + 2 \, x^{2} + 1\right )}} \]

input
integrate(x^(7/2)/(x^2+1)^3,x, algorithm="maxima")
 
output
5/64*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(x))) + 5/64*sqrt(2)*arct 
an(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(x))) + 5/128*sqrt(2)*log(sqrt(2)*sqrt(x) 
 + x + 1) - 5/128*sqrt(2)*log(-sqrt(2)*sqrt(x) + x + 1) - 1/16*(9*x^(5/2) 
+ 5*sqrt(x))/(x^4 + 2*x^2 + 1)
 
3.4.29.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.73 \[ \int \frac {x^{7/2}}{\left (1+x^2\right )^3} \, dx=\frac {5}{64} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {x}\right )}\right ) + \frac {5}{64} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {x}\right )}\right ) + \frac {5}{128} \, \sqrt {2} \log \left (\sqrt {2} \sqrt {x} + x + 1\right ) - \frac {5}{128} \, \sqrt {2} \log \left (-\sqrt {2} \sqrt {x} + x + 1\right ) - \frac {9 \, x^{\frac {5}{2}} + 5 \, \sqrt {x}}{16 \, {\left (x^{2} + 1\right )}^{2}} \]

input
integrate(x^(7/2)/(x^2+1)^3,x, algorithm="giac")
 
output
5/64*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(x))) + 5/64*sqrt(2)*arct 
an(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(x))) + 5/128*sqrt(2)*log(sqrt(2)*sqrt(x) 
 + x + 1) - 5/128*sqrt(2)*log(-sqrt(2)*sqrt(x) + x + 1) - 1/16*(9*x^(5/2) 
+ 5*sqrt(x))/(x^2 + 1)^2
 
3.4.29.9 Mupad [B] (verification not implemented)

Time = 4.77 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.48 \[ \int \frac {x^{7/2}}{\left (1+x^2\right )^3} \, dx=-\frac {\frac {5\,\sqrt {x}}{16}+\frac {9\,x^{5/2}}{16}}{x^4+2\,x^2+1}+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {x}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {5}{64}+\frac {5}{64}{}\mathrm {i}\right )+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {x}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {5}{64}-\frac {5}{64}{}\mathrm {i}\right ) \]

input
int(x^(7/2)/(x^2 + 1)^3,x)
 
output
2^(1/2)*atan(2^(1/2)*x^(1/2)*(1/2 - 1i/2))*(5/64 + 5i/64) + 2^(1/2)*atan(2 
^(1/2)*x^(1/2)*(1/2 + 1i/2))*(5/64 - 5i/64) - ((5*x^(1/2))/16 + (9*x^(5/2) 
)/16)/(2*x^2 + x^4 + 1)